Some results on the rotated infinitely deep potential and its coherent states
F. Bagarello
Physica A: Statistical Mechanics and its Applications, 2021, vol. 564, issue C
Abstract:
The Swanson model is an exactly solvable model in quantum mechanics with a manifestly non self-adjoint Hamiltonian whose eigenvalues are all real. Its eigenvectors can be deduced easily, by means of suitable ladder operators. This is because the Swanson Hamiltonian is deeply connected with that of a standard quantum Harmonic oscillator, after a suitable rotation in configuration space is performed. In this paper we consider a rotated version of a different quantum system, the infinitely deep potential, and we consider some of the consequences of this rotation. In particular, we show that differences arise with respect to the Swanson model, mainly because of the technical need of working, here, with different Hilbert spaces, rather than staying in L2(R). We also construct Gazeau–Klauder coherent states for the system, and analyze their properties.
Keywords: Deformed quantum mechanical systems; Orthonormal bases; Gazeau–Klauder coherent states (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120308633
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:564:y:2021:i:c:s0378437120308633
DOI: 10.1016/j.physa.2020.125565
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().