EconPapers    
Economics at your fingertips  
 

A lane-changing risk profile analysis method based on time-series clustering

Tianyi Chen, Xiupeng Shi and Yiik Diew Wong

Physica A: Statistical Mechanics and its Applications, 2021, vol. 565, issue C

Abstract: Lane-changing (LC) is an essential driving maneuver on roadways, and risky LC maneuvers account for a large number of crash accidents. This study investigates the LC risk profile during an LC process. A risk indicator based on driving safety field theory is employed to measure the instantaneous LC risk at each timestamp during an LC process and generate the LC risk profile. Then, Dynamic Time Warping (DTW) k-means clustering, as a time-series clustering method, is applied to partition the LC risk profiles into several categories. The Next Generation Simulation (NGSIM) US-101 dataset, which contains detailed records of vehicles’ trajectories, is used for case study. In the case study, the LC risk profiles are categorized into “uphill” shape, “bell” shape, and “downhill” shape. The LC risk profiles with “uphill” shape account for the majority of the LC risk profiles. Besides, we find that the LC process with “uphill” shaped risk profile generally has higher LC risk, and the crash risk between LC car and its preceding cars are more relevant to the LC risk. Those findings are likely due to the LC maneuver with the purpose to overtake the preceding car in the original lane. The risk indicator based on driving safety field theory can measure LC risk more comprehensively, compared to the conventional surrogate measures. The DTW k-means clustering method offers a promising approach to investigate the causation of risky LC maneuver based on the risk profile during an LC process.

Keywords: Lane-changing; Risk profile analysis; Driving safety field theory; Instantaneous risk measurement; Time-series clustering (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120308657
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308657

DOI: 10.1016/j.physa.2020.125567

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:565:y:2021:i:c:s0378437120308657