Inferring pattern generators on networks
Piotr Nyczka,
Marc-Thorsten Hütt and
Annick Lesne
Physica A: Statistical Mechanics and its Applications, 2021, vol. 566, issue C
Abstract:
Given a pattern on a network, i.e. a subset of nodes, can we assess, whether they are randomly distributed on the network or have been generated in a systematic fashion following the network architecture? This question is at the core of network-based data analyses across a range of disciplines — from incidents of infection in social networks to sets of differentially expressed genes in biological networks. Here we introduce generic ‘pattern generators’ based on an Eden growth model. We assess the capacity of different pattern measures like connectivity, edge density or various average distances, to infer the parameters of the generator from the observed patterns. Some measures perform consistently better than others in inferring the underlying pattern generator, while the best performing measures depend on the global topology of the underlying network. Moreover, we show that pattern generator inference remains possible in case of limited visibility of the patterns.
Keywords: Patterns; Network clusters; Teleportation random walks; Eden model; Parametric inference; Mutual information (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120309298
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309298
DOI: 10.1016/j.physa.2020.125631
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().