EconPapers    
Economics at your fingertips  
 

Block size dependence of coarse graining in discrete opinion dynamics model: Application to the US presidential elections

Kathakali Biswas, Soumyajyoti Biswas and Parongama Sen

Physica A: Statistical Mechanics and its Applications, 2021, vol. 566, issue C

Abstract: The electoral college of voting system for the US presidential election is analogous to a coarse graining procedure commonly used to study phase transitions in physical systems. In a recent paper, opinion dynamics models manifesting a phase transition, were shown to be able to explain the cases when a candidate winning more number of popular votes could still lose the general election on the basis of the electoral college system. We explore the dependence of such possibilities on various factors like the number of states and total population (i.e., system sizes) and get an interesting scaling behavior. In comparison with the real data, it is shown that the probability of the minority win, calculated within the model assumptions, is indeed near the highest possible value. In addition, we also implement a two step coarse graining procedure, relevant for both opinion dynamics and information theory.

Keywords: Ising model; Kinetic exchange opinion model; Critical point; Noise factors; Scaling variable (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120309377
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309377

DOI: 10.1016/j.physa.2020.125639

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:566:y:2021:i:c:s0378437120309377