A Benford’s Law based methodology for fraud detection in social welfare programs: Bolsa Familia analysis
Caio da Silva Azevedo,
Rodrigo Franco Gonçalves,
Vagner Luiz Gava and
Mauro de Mesquita Spinola
Physica A: Statistical Mechanics and its Applications, 2021, vol. 567, issue C
Abstract:
This paper aims to introduce a data science approach for guiding auditors to accurately select regions suspected of frauds in welfare programs benefits distribution. The technique relies on Newcomb–Benford’s Law (NBL) for significant digits. It has been analysed Bolsa Familia data from Federal Government Transparency Portal, a tool that aims to increase fiscal transparency of the Brazilian Government through open budget data. The methodology consists in submit four data samples to null hypothesis statistical methods and thereby evaluate the conformity with the law as well as the summation test which looks for excessively large numbers in the dataset. Research results in this paper are that beneficiaries’ cash transfer per se is not a good test variable. Besides, once payment data are grouped by municipalities, they fit NBL, and finally, when submitted to the summation test, the distribution of the Bolsa Familia payments in several municipalities shows some fraud evidence. In this sense, we conclude the NBL can be an appropriate method to fraud investigation of welfare programs’ benefits distribution having beneficiaries’ payment geographically grouped.
Keywords: Big data analytics; Newcomb–Benford’s Law; Statistical antifraud analysis; Anomaly detection; Bolsa Familia; Social welfare programs (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120309249
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309249
DOI: 10.1016/j.physa.2020.125626
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().