Interdependent transport via percolation backbones in spatial networks
Bnaya Gross,
Ivan Bonamassa and
Shlomo Havlin
Physica A: Statistical Mechanics and its Applications, 2021, vol. 567, issue C
Abstract:
The functionality of nodes in a network is often described by the structural feature of belonging to the giant component. However, when dealing with problems like transport, a more appropriate functionality criterion is for a node to belong to the network’s backbone, where the flow of information and of other physical quantities (such as current) occurs. Here we study percolation in a model of interdependent resistor networks and show the effect of spatiality on their coupled functioning. We do this on a realistic model of spatial networks, featuring a Poisson distribution of link-lengths. We find that interdependent resistor networks are significantly more vulnerable than their percolation-based counterparts, featuring first-order phase transitions at link-lengths where the mutual giant component still emerges continuously. We explain this apparent contradiction by tracing the origin of the increased vulnerability of interdependent transport to the crucial role played by the dangling ends. Moreover, we interpret these differences by considering an heterogeneous k-core percolation process which enables to define a one-parameter family of functionality criteria whose constraints become more and more stringent. Our results highlight the importance that different definitions of nodes functionality have on the collective properties of coupled processes, and provide better understanding of the problem of interdependent transport in many real-world networks.
Keywords: Resistor networks; Interdependent networks; Percolation theory; Spatial networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120309420
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309420
DOI: 10.1016/j.physa.2020.125644
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().