EconPapers    
Economics at your fingertips  
 

Hidden Markov models with binary dependence

Ozgur Danisman and Umay Uzunoglu Kocer

Physica A: Statistical Mechanics and its Applications, 2021, vol. 567, issue C

Abstract: Hidden Markov models are widely used to model the probabilistic structures with latent variables. The main assumption of hidden Markov models is that; observation symbols are conditionally independent and identically distributed random variables. There exist some cases where this assumption may not be valid in practice. That is, an observation symbol that occurs in the current state may depend on the previous observation symbol that occurred in the previous state. In this study, a new type of hidden Markov model is introduced in which the current pair of hidden state-emitted observation symbol and the previous pair of those have a first-order Markov dependency. The proposed model is capable of capturing a possible first-order Markov dependency between the last and the previous steps of the system. In addition, it provides a better representation for the appropriate real-life problems where, if the observation symbols have conditional dependence. It is an alternative model to the classical hidden Markov model for revealing the Markov dependency between the current and the previous binary information of the system. An experimental study is conducted to show the performance of the proposed model compared to the classical hidden Markov model. Besides, two different case studies are conducted namely the occurrences of strong earthquakes and daily stock prices are modeled with both the classical hidden Markov model and the proposed model, and the results are compared.

Keywords: Markov process; Dependency assumption; Baum–Welch algorithm; Hidden Markov model; Parameter estimation; Strong earthquake (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120309663
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309663

DOI: 10.1016/j.physa.2020.125668

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309663