A novel study on perception–cognition scenario in music using deterministic and non-deterministic approach
Archi Banerjee,
Shankha Sanyal,
Souparno Roy,
Sayan Nag,
Ranjan Sengupta and
Dipak Ghosh
Physica A: Statistical Mechanics and its Applications, 2021, vol. 567, issue C
Abstract:
In the last few decades, nonlinear science and chaos theory has provided several robust non-deterministic tools by means of which the complexity of a nonlinear audio waveform can be measured precisely. On the other hand, sound signal analysis in linear deterministic approach has reached a new dimension where a number of well equipped software have been developed which can minutely measure and control the basic parameters of sound like pitch, intensity, tempo etc. The main objective of the present work is to quantitatively study the changes in acoustic signal complexity (measured using chaos based fractal technique) with individual variation in pitch, loudness and timbre of a sound signal. EEG (Electroencephalography) was also performed on 10 participants to see how the neuro-cognitive attributes of a sound change, i.e. when these basic components — pitch, loudness and timbre of the sound vary, one at a time. Single strokes of a piano were recorded where pitch and loudness of the sound signals were varied one at a time keeping the other parameters fixed. Then the sounds of 14 different musical instruments playing the same pitch at same loudness were recorded, which effectively served the purpose of timbre variation. EEG experiment was conducted with these audio signals as stimuli for the participants. The multifractal spectral widths were calculated for all the music signals as well as the corresponding EEG signals using Multifractal Detrended Fluctuation Analysis (MFDFA) and compared with each other. The results point towards the direction of a correlation between the conventional linear parameters and the latest nonlinear features in the acoustic domain, while the changes in the multifractal values of the different EEG waves reveal new information about the cognition of the basic features of sound in human brain. This study is a novel attempt to provide new data in engulfing apparent objective (acoustics) - subjective (EEG) connection, which is highly needed for building any model for perception–cognition connectivity.
Keywords: Pitch; Loudness; Timbre; Perception–cognition; EEG; MFDFA (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437120309808
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:567:y:2021:i:c:s0378437120309808
DOI: 10.1016/j.physa.2020.125682
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().