EconPapers    
Economics at your fingertips  
 

A reduced model for complex network analysis of public transportation systems

Anderson Andrei De Bona, Marcelo de Oliveira Rosa, Keiko Verônica Ono Fonseca and Ricardo Lüders

Physica A: Statistical Mechanics and its Applications, 2021, vol. 567, issue C

Abstract: Public transportation networks (PTNs) are represented as complex networks in order to analyze their robustness regarding node and link failures, to classify them into different theoretical network models, and to identify the characteristics of the underlying network. Usually, PTNs have a large amount of 1- and 2- degree nodes that blur the analysis and their characterization as complex networks. Subway and train-based transport networks present long single lines that connect central stations to far destinations differently from airport networks that usually have few large airports (hubs) connecting a significant number of small airports. By focusing on relevant network nodes and links and allowing comparisons between PTNs of different transportation modes, this paper proposes the Reduced Model as a simple method of network reduction that preserves the network skeleton (backbone structure) by properly removing 2-degree nodes of weighted and unweighted network representations. Different from other proposed methods, its simple formulation leads to mathematical expressions that show how the reduced model affects fundamental network metrics (degree, path length, and clustering coefficient distributions). The Reduced model is applied to four large real-world PTNs: (i) two Brazilian cities with bus-based transport; (ii) the Seoul metro network; (iii) a worldwide airport network. The results reveal a hub-based hierarchical structure when a large number of intermediary stops are present and small-world properties that emphasizes hub–hub connections after applying the Reduced model. Therefore, the reduced model emphasizes characteristics of the networks that could be difficult to identify without reduction.

Keywords: Public transportation; Complex networks (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712031013X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:567:y:2021:i:c:s037843712031013x

DOI: 10.1016/j.physa.2020.125715

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:567:y:2021:i:c:s037843712031013x