A phase transition induced by traffic lights on a single lane road
A. Chacoma,
G. Abramson and
M.N. Kuperman
Physica A: Statistical Mechanics and its Applications, 2021, vol. 568, issue C
Abstract:
In this work, we study the effect of a traffic light system on the flow of a single lane road by proposing a traffic model based on a cellular automaton that also includes behavioral considerations. We focus on the macroscopic characterization of the system by studying the changes in vehicle density and the occurrence of jams. In this context, we observe and characterize a phase transition between the free flow and jammed states. This transition is induced by the instabilities originated by the vehicles stopping at the traffic lights. Moreover, we analyze the effect of these instabilities on the critical density of vehicles at which the transition occurs as a function of two parameters: (i) the in-flow of cars, (ii) the drivers’ behavior. For the latter we observe that the traffic light perturbations feedback on the drivers’ behavior can lead the system to different scenarios, which are also analyzed.
Keywords: Traffic model (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121000352
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437121000352
DOI: 10.1016/j.physa.2021.125763
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().