EconPapers    
Economics at your fingertips  
 

Coherence-enhanced thermal amplification for small systems

Shanhe Su, Yanchao Zhang, Bjarne Andresen and Jincan Chen

Physica A: Statistical Mechanics and its Applications, 2021, vol. 569, issue C

Abstract: Coherent control of self-contained quantum systems offers the possibility to fabricate smallest thermal transistors. The steady coherence created by the delocalization of electronic excited states arouses nonlinear heat transports in non-equilibrium environment. Applying this result to a three-level quantum system, we show that quantum coherence gives rise to negative differential thermal resistances, making the thermal transistor suitable for thermal amplification. The results demonstrate that quantum coherence facilitates efficient thermal signal processing and can open a new field in the application of quantum thermal management devices.

Keywords: Quantum coherence; Three-level system; Thermal amplification; Thermal conductance (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712100025X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:569:y:2021:i:c:s037843712100025x

DOI: 10.1016/j.physa.2021.125753

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:569:y:2021:i:c:s037843712100025x