EconPapers    
Economics at your fingertips  
 

Information measure for long-range correlated time series: Quantifying horizon dependence in financial markets

Linda Ponta, Pietro Murialdo and Anna Carbone

Physica A: Statistical Mechanics and its Applications, 2021, vol. 570, issue C

Abstract: Market dynamics is quantified via the cluster entropy S(τ,n)=∑jPj(τ,n)logPj(τ,n), an information measure with Pjτ,n the probability for the clusters, defined by the intersection between the price series and its moving average with window n, to occur with duration τ. The cluster entropy S(τ,n) is estimated over a broad range of temporal horizons M, for raw and sampled highest-frequency data of US markets. A systematic dependence of S(τ,n) on M emerges in agreement with price dynamics and correlation involving short and long range horizon dependence over multiple temporal scales. A comparison with the price dynamics based on Kullback–Leibler entropy simulations with different representative agent models is also reported.

Keywords: Complex systems; Information Measures; Long-range dependence; Financial Markets (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121000492
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000492

DOI: 10.1016/j.physa.2021.125777

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000492