EconPapers    
Economics at your fingertips  
 

Modeling social interaction and intention for pedestrian trajectory prediction

Kai Chen, Xiao Song and Xiaoxiang Ren

Physica A: Statistical Mechanics and its Applications, 2021, vol. 570, issue C

Abstract: Future pedestrian trajectory prediction offers great prospects for many practical applications. Most existing methods focus on social interaction among pedestrians but ignore the fact that in addition to pedestrians there are other kinds of objects (cars, dogs, bicycles, motorcycles, etc.) with a great influence on the subject pedestrian’s future trajectory. Most existing methods neglect the intentions of the pedestrian, which can be obtained by the key points of the subject pedestrian’s face. Therefore, rich category information about the subject pedestrian’s surroundings and face key points plays a great role in promoting the modeling of pedestrian movement. Motivated by this idea, this paper tries to predict a pedestrian’s future trajectory by jointly using various categories and the relative positions of the subject pedestrian’s surroundings and the key points in his face. We propose a data modeling method to effectively unify rich visual features about categories, interaction and face key points into a multi-channel tensor and build an end-to-end fully convolutional encoder–decoder attention model based on convolutional long–short-term memory utilizing this tensor. We evaluate and compare our method with several existing methods on 5 crowded video sequences from the public dataset multi-object tracking (MOT) -16. Experimental results show that our method outperforms state-of-the-art approaches, with less prediction error.

Keywords: Social-interaction; Pedestrian intention; Convolutional long–short-term​ memory; Encoder–decoder; Attention (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121000625
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000625

DOI: 10.1016/j.physa.2021.125790

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:570:y:2021:i:c:s0378437121000625