EconPapers    
Economics at your fingertips  
 

Identifying multiple influential spreaders based on maximum connected component decomposition method

Jun-li Zhang, Yan-jun Fu, Lan Cheng and Yun-yun Yang

Physica A: Statistical Mechanics and its Applications, 2021, vol. 571, issue C

Abstract: Identifying influential spreaders is of great significance to the information diffusion, the identifying of hub protein, the control of infectious diseases. For multiple spreaders, an ideal situation is that not only the spreaders themselves are influential but also relatively dispersed to effectively reduce overlaps. However, it is difficult to make a good tradeoff between them. In this paper, the maximum connected component decomposition method (MCCD) is proposed to identify influential spreaders in complex networks. In this method, different topological attributes of nodes are comprehensively considered and combined with the decomposition method of maximum connected components (MCC) with the topological features. Firstly, the nodes are reranked according to the comprehensive consideration of network topology information. Then, the nodes with higher rankings in the network are checked. If the size and number of the largest connected components in the network are the smallest after deleting a node, the node is selected as the new spreader. When multiple nodes have the same size and number of the maximum connected components, values of which are minimal in all cases, topology information for other connected components of these nodes is considered. Moreover, the method can identify initial spreaders that are not the highest ranking but have great impacts on the network, including the spreading speed, propagation range, and distribution range of initial spreaders. Experimental studies in the Susceptible–Infected–Recovered (SIR) model are shown in four networks to verify the performance of our proposed method along with seven centrality-based and heuristic methods.

Keywords: Complex networks; Multiple spreaders; Node influence capability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121000637
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121000637

DOI: 10.1016/j.physa.2021.125791

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121000637