Mobility driven coexistence of living organisms
B.F. de Oliveira,
M.V. de Moraes,
D. Bazeia and
A. Szolnoki
Physica A: Statistical Mechanics and its Applications, 2021, vol. 572, issue C
Abstract:
We propose a minimal off-lattice model of living organisms where just a very few dynamical rules of growth are assumed. The stable coexistence of many clusters is detected when we replace the global restriction rule by a locally applied one. A rich variety of evolving patterns is revealed where players movement has a decisive role on the evolutionary outcome. For example, intensive individual mobility may jeopardize the survival of the population, but if we increase players movement further then it can save the population. Notably, the collective drive of population members is capable to compensate the negative consequence of intensive movement and keeps the system alive. When the drive becomes biased then the resulting unidirectional flow alters the stable pattern and produce a stripe-like state instead of the previously observed hexagonal arrangement of clusters. Interestingly, the rotation of stripes can be flipped if the individual movement exceeds a threshold value.
Keywords: Clustering; Drive; Pattern formation (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121001266
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:572:y:2021:i:c:s0378437121001266
DOI: 10.1016/j.physa.2021.125854
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().