On the influence maximization problem and the percolation phase transition
Yoav Kolumbus and
Sorin Solomon
Physica A: Statistical Mechanics and its Applications, 2021, vol. 573, issue C
Abstract:
We analyze the problem of network influence maximization in the uniform independent cascade model: Given a network with N nodes and a probability p for a node to contaminate a neighbor, find a set of k initially contaminated nodes that maximizes the expected number of eventually contaminated nodes. This problem is of interest theoretically and for many applications in social networks. Unfortunately, it is a NP-hard problem. Using Percolation Theory, we show that in practice the problem is hard only in a vanishing neighborhood of a critical value p=pc. For p>pc there exists a “Giant Cluster” of order N, that is easily found in finite time. For pKeywords: Networks; Influence maximization; Percolation; Empirical hardness (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121002004
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:573:y:2021:i:c:s0378437121002004
DOI: 10.1016/j.physa.2021.125928
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().