Thermodynamic consistency by a modified Perkus–Yevick theory using the Mittag-Leffler function
F.S. Carvalho and
J.P. Braga
Physica A: Statistical Mechanics and its Applications, 2021, vol. 576, issue C
Abstract:
Closure relations that satisfies thermodynamical consistencies are very important, for it implies physical consistent Ornstein–Zernike equation solutions. The method proposed by Percus (1962), which uses the functional Taylor expansion to obtain closure relations, is presented along with the particular generating functional considered to retrieve the Percus–Yevick (PY) approximation. The main assumption for this particular case, which takes into account the low density limit, is discussed. Based on this argument, it was proposed a modified generating functional with no prior considerations about the system density. As an example, the two-parameters Mittag-Leffler function was used. Since it generalizes the exponential function, the parameters determined at low densities retrieves the PY approximation. For higher densities it was possible to obtain parameters which lead to pressure consistent results, in good agreement with those found in literature.
Keywords: Closure relations; Functional Taylor expansion; Generating functional; Two-parameter Mittag-Leffler function; Pressure consistency (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121003381
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:576:y:2021:i:c:s0378437121003381
DOI: 10.1016/j.physa.2021.126065
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().