EconPapers    
Economics at your fingertips  
 

Quantized noncommutative Riemann manifolds and stochastic processes: The theoretical foundations of the square root of Brownian motion

Marco Frasca, Alfonso Farina and Moawia Alghalith

Physica A: Statistical Mechanics and its Applications, 2021, vol. 577, issue C

Abstract: We lay the theoretical and mathematical foundations of the square root of Brownian motion and we prove the existence of such a process. In doing so, we consider Brownian motion on quantized noncommutative Riemannian manifolds and show how a set of stochastic processes on sets of complex numbers can be devised. This class of stochastic processes are shown to yield at the outset a Chapman–Kolmogorov equation with a complex diffusion coefficient that can be straightforwardly reduced to the Schrödinger equation. The existence of these processes has been recently shown numerically. In this work we provide an analogous support for the existence of the Chapman–Kolmogorov–Schrödinger equation for them, performing a Monte Carlo study. It is numerically seen as a Wick rotation can turn the heat kernel into the Schrödinger one, mapping such kernels through the corresponding stochastic processes. In this way, we introduce a new kind of improper complex stochastic process. This permits a reformulation of quantum mechanics using purely geometrical concepts that are strongly linked to stochastic processes. Applications to economics are also entailed.

Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121003095
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003095

DOI: 10.1016/j.physa.2021.126037

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:577:y:2021:i:c:s0378437121003095