EconPapers    
Economics at your fingertips  
 

Multifractal detrended fluctuation analysis of temperature in Spain (1960–2019)

Javier Gómez-Gómez, Rafael Carmona-Cabezas, Ana B. Ariza-Villaverde, Eduardo Gutiérrez de Ravé and Francisco José Jiménez-Hornero

Physica A: Statistical Mechanics and its Applications, 2021, vol. 578, issue C

Abstract: In the last decades, an ever-growing number of studies are focusing on the extreme weather conditions related to the climate change. Some of them are based on multifractal approaches, such as the Multifractal Detrended Fluctuation Analysis (MF-DFA), which has been used in this work. Daily diurnal temperature range (DTR), maximum, minimum and mean temperature from five coastal and five mainland stations in Spain have been analyzed. For comparison, two periods of 30 years have been considered: 1960–1989 and 1990–2019. By using the MF-DFA method, generalized Hurst exponents and multifractal spectra have been obtained. Outcomes corroborate that all these temperature variables have multifractal nature and show changes in multifractal properties between both periods. Also, Hurst exponents values indicate that all time series exhibit long-range correlations and a stationary behavior. Coastal locations exhibit in general wider spectra for minimum and mean temperature than for maximum and DTR, in both periods. On the contrary, the mainland ones do not show this pattern. Also, width from multifractal spectra of these two variables (minimum and mean temperature) is shortened in the last period in almost every case. To authors’ mind, changes in multifractal features might be related to the climate change experienced in the studied region. Furthermore, reduction of spectra width for minimum and mean temperature implies a decrease of the complexity of these temperature variables between both studied periods. Finally, the wider spectra found in coastal stations might be useful as a discriminator element to improve climate models.

Keywords: Multifractal detrended fluctuation analysis; Long-range correlation; Air surface temperature; Climate variability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121003915
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:578:y:2021:i:c:s0378437121003915

DOI: 10.1016/j.physa.2021.126118

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:578:y:2021:i:c:s0378437121003915