EconPapers    
Economics at your fingertips  
 

LKG: A fast scalable community-based approach for influence maximization problem in social networks

Ahmed M. Samir, Sherine Rady and Tarek F. Gharib

Physica A: Statistical Mechanics and its Applications, 2021, vol. 582, issue C

Abstract: The detection of top influential users in social networks is considered one of the current vital research field. The spreading of the information in social networks can be analyzed and sometimes controlled by studying those top influential users. This paper proposes LKG, a fast and scalable hybrid approach to detect top influential users in social networks, suitable for both directed and undirected networks. The LKG hybrid approach consists of three phases: (1) community detection, in which the complete social network is partitioned into related communities using the Louvain algorithm; (2) detection of community top nodes by applying the k-shell decomposition locally in each portioned community; and (3) selection generalization, in which the prior obtained results are generalized for maximizing the spread of influence. Experimental studies were conducted on several datasets with different sizes. The results have been shown to achieve better results for the spread of influence using incomplete social networks than the existing related work models and with far much less processing time.

Keywords: Social networks; Social media; Community detection; Influence maximization; k-shell; Top nodes (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121005318
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005318

DOI: 10.1016/j.physa.2021.126258

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:582:y:2021:i:c:s0378437121005318