A singular value decomposition entropy approach for testing stock market efficiency
Jose Alvarez-Ramirez and
Eduardo Rodriguez
Physica A: Statistical Mechanics and its Applications, 2021, vol. 583, issue C
Abstract:
This work proposed an approach to test the efficient market hypothesis (EMH) based on the singular value decomposition (SVD) entropy. The entropy is computed from the singular value distribution of a matrix formed by lagged returns up to a scale n. To decide whether a time series is predictable, the estimated SVD entropy was compared with a reference entropy obtained from uncorrelated (white noise) time series of the same size. The application of the method to the US stock markets (Dow Jones, Nasdaq and Standard & Poor-500) for the period 1980–2021 provided consistent results with previous reports. In this way, it was shown that the US stock markets in the scrutinized period have fulfilled the EMH most of the time, except for some periods that can be linked to important market events, like crises (e.g., 1987 Black Monday crash) and instabilities. In particular, the SVD entropy exhibited significant decreases in such events, which were interpreted as the formation of patterns with certain degree of predictability. Overall, the SVD entropy is a tool that can complement the existing nonlinear analysis methods to test the complexity of financial time series.
Keywords: Entropy; Singular value decomposition; Stock markets; Predictability (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121006105
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:583:y:2021:i:c:s0378437121006105
DOI: 10.1016/j.physa.2021.126337
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().