Thermal rectification and negative differential thermal conductance based on a parallel-coupled double quantum-dot
Yanchao Zhang and
Shanhe Su
Physica A: Statistical Mechanics and its Applications, 2021, vol. 584, issue C
Abstract:
We investigate the heat flow transport properties of a parallel-coupled double quantum-dot system connected to two reservoirs with a temperature bias in the Coulomb blockade regime. We demonstrate that the effects of thermal rectification and negative differential thermal conductance (NDTC) exist in this system and analyze the influences of energy level difference and Coulomb interaction on the thermal rectification and NDTC. We find that this system can achieve a high thermal rectification ratio and NDTC when the asymmetry factor of the system is enhanced.
Keywords: Thermal rectification; Negative differential thermal conductance; Double quantum-dot; Coulomb blockade regime (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121006208
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:584:y:2021:i:c:s0378437121006208
DOI: 10.1016/j.physa.2021.126347
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().