Accounting for previous events to model and predict traffic accidents at the road segment level: A study in Valencia (Spain)
Álvaro Briz-Redón,
Adina Iftimi and
Francisco Montes
Physica A: Statistical Mechanics and its Applications, 2022, vol. 585, issue C
Abstract:
Predicting the occurrence of traffic accidents is essential for establishing preventive measures and reducing the impact of traffic accidents. In particular, it is fundamental to make predictions using fine spatio-temporal units. In this paper, the daily risk of traffic accident occurrence across the road network of Valencia (Spain) is modeled through logistic regression models. The spatio-temporal dependence between the observations is accounted for through the inclusion of lagged binary covariates representing the previous occurrence of a traffic accident within a spatio-temporal window centered at each combination of day and segment of the network. A temporal distance of 28 days and a fifth-order spatial distance are set as the limits of such dependence. Furthermore, the models include fixed effects in terms of several socio-demographic, network-related, and weather-related covariates. Temporal (month and day of the week) and spatial (borough-level) effects are also considered. The predictive quality of the models is examined through the Matthews correlation coefficient and the prediction accuracy index. The results indicate that the incorporation of spatio-temporal dependence improves the predictive ability of the models. However, while the inclusion of temporally-lagged covariates representing short-and mid-term temporal dependence yields more accurate predictions, the higher-order spatial lags barely alter model performance.
Keywords: Traffic accidents; Logistic model; Spatio-temporal effects; Segment-level analysis; Predictive accuracy (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121006890
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006890
DOI: 10.1016/j.physa.2021.126416
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().