Multi-likelihood methods for developing relationship networks using stock market data
Xue Guo,
Weibo Li,
Hu Zhang and
Tianhai Tian
Physica A: Statistical Mechanics and its Applications, 2022, vol. 585, issue C
Abstract:
The development of stock relationship networks is an important topic to explore the potential connections between different stocks. The methods based on the threshold and correlation relationship have been designed in recent years to construct networks by selecting the highly correlated links. However, if a single threshold value is used, one of the major challenges in these methods is the balance between the degree of stocks and the connectivity of the generated network. To address this issue, we propose a new method to make proper selections of links and maintain the connectivity of established networks. Instead of using a single threshold value for the whole network, our proposed approach selects a threshold value for each stock using the maximum likelihood estimation. The innovation of our method is to apply different distribution functions to the weak and strong correlations separately. Using the dataset from the Chinese Shanghai security market, we develop the stock correlation networks and analyze the topological properties of established networks, including the degree distribution, clustering coefficient and clique. Our results suggest that the proposed method is able to provide better insights into the characteristics of the stock market.
Keywords: Stock network; Mutual information; Threshold; Multi-likelihood estimation; Clique (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121006944
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121006944
DOI: 10.1016/j.physa.2021.126421
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().