EconPapers    
Economics at your fingertips  
 

Short-term traffic prediction based on time series decomposition

Haichao Huang, Jingya Chen, Rui Sun and Shuang Wang

Physica A: Statistical Mechanics and its Applications, 2022, vol. 585, issue C

Abstract: Traffic flow decomposition is an alternative method to explore the composition of traffic flow and improve prediction accuracy. However, most of them suffer from the inability to fully utilize the character of traffic data. This paper presents a novel framework for traffic flow decomposition and modeling named Time Series Decomposition (TSD). The traffic flow is adaptively decomposed into periodic component, residual component and volatile component which are modeled respectively. Empirical Mode Decomposition (EMD) is applied to extract the intrinsic mode functions (IMFs) of traffic flow, the periodic patterns are intuitively presented via Hilbert transform in terms of frequencies. Then the periodic component can be described as a Fourier series based on obtained frequencies. Meanwhile, the residual component is presented by IMF with the lowest frequency. The remaining part is the volatile component modeled by supervised learning. The proposed hybrid model is evaluated on the real-world dataset and compared with classical baseline models. The results demonstrate that TSD can unearth the underlying periodic patterns and provide an explicable composition of the traffic flow. Furthermore, the volatile component ensures the accuracy of single-step prediction while periodic and residual components show promising abilities in improving the multi-step prediction accuracy of short-term traffic flow.

Keywords: Short-term traffic flow prediction; Time series decomposition; Periodic pattern; Multi-step prediction (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121007147
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121007147

DOI: 10.1016/j.physa.2021.126441

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:585:y:2022:i:c:s0378437121007147