Chaitin’s Omega and an algorithmic phase transition
Christof Schmidhuber
Physica A: Statistical Mechanics and its Applications, 2022, vol. 586, issue C
Abstract:
We consider the statistical mechanical ensemble of bit string histories that are computed by a universal Turing machine. The role of the energy is played by the program size. We show that this ensemble has a first-order phase transition at a critical temperature, at which the partition function equals Chaitin’s halting probability Ω. This phase transition has curious properties: the free energy is continuous near the critical temperature, but almost jumps: it converges more slowly to its finite critical value than any computable function. At the critical temperature, the average size of the bit strings diverges. We define a non-universal Turing machine that approximates this behavior of the partition function in a computable way by a super-logarithmic singularity, and discuss its thermodynamic properties. We also discuss analogies and differences between Chaitin’s Omega and the partition function of a quantum mechanical particle, and with quantum Turing machines. For universal Turing machines, we conjecture that the ensemble of bit string histories at the critical temperature has a continuum formulation in terms of a string theory.
Keywords: Chaitin’s Omega; Complexity; Turing machine; Algorithmic thermodynamics; Phase transition; String theory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121007317
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:586:y:2022:i:c:s0378437121007317
DOI: 10.1016/j.physa.2021.126458
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().