Attention meets long short-term memory: A deep learning network for traffic flow forecasting
Weiwei Fang,
Wenhao Zhuo,
Jingwen Yan,
Youyi Song,
Dazhi Jiang and
Teng Zhou
Physica A: Statistical Mechanics and its Applications, 2022, vol. 587, issue C
Abstract:
Accurate forecasting of future traffic flow has a wide range of applications, which is a fundamental component of intelligent transportation systems. However, timely and accurate traffic forecasting remains an open challenge due to the high nonlinearity and volatility of traffic flow data. Canonical long short-term memory (LSTM) networks are easily drawn to focus on min-to-min fluctuations rather than the long term dependencies of the traffic flow evolution. To address this issue, we propose to introduce an attention mechanism to the long short-term memory network for short-term traffic flow forecasting. The attention mechanism helps the network model to assign different weights to different inputs, focus on critical and important information, and make accurate predictions. Extensive experiments on four benchmark data sets show that the LSTM network equipped with an attention mechanism has superior performance compared with commonly used and state-of-the-art models.
Keywords: Intelligent transportation system; Traffic flow modeling; Time series analysis; Deep learning; Attention mechanism; Noise-immune learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121007585
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:587:y:2022:i:c:s0378437121007585
DOI: 10.1016/j.physa.2021.126485
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().