EconPapers    
Economics at your fingertips  
 

Thermal properties of the one-dimensional space quantum fractional Dirac Oscillator

Nabil Korichi, Abdelmalek Boumali and Hassan Hassanabadi

Physica A: Statistical Mechanics and its Applications, 2022, vol. 587, issue C

Abstract: In this paper, we investigate the fractional version of the one-dimensional relativistic oscillators. We apply some important definitions and properties of a new kind of fractional formalism on the Dirac oscillator (DO). By using a semiclassical approximation, the energy eigenvalues have been determined for the oscillator. The obtained results show a remarkable influence of the fractional parameter on the energy eigenvalues. By considering a unique energy spectrum, we present a simple numerical computation of the thermal properties of a defined energy spectrum of a system. the Euler–Maclaurin formula has been used to calculate the partition function and therefore the associated thermodynamics quantities. In addition, the eigensolutions of the fractional Dirac oscillator, based on the factorization method, have been determined.

Keywords: Fractional formalism; Dirac oscillator; Fractional Harmonic oscillator; Semi-classical approximation (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121007810
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:587:y:2022:i:c:s0378437121007810

DOI: 10.1016/j.physa.2021.126508

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:587:y:2022:i:c:s0378437121007810