Spatial heterogeneity and migration characteristics of traffic congestion—A quantitative identification method based on taxi trajectory data
Xin Fu,
Chengyao Xu,
Yuteng Liu,
Chi-Hua Chen,
F.J. Hwang and
Jianwei Wang
Physica A: Statistical Mechanics and its Applications, 2022, vol. 588, issue C
Abstract:
It is of great reference significance to exploring spatial dependence of urban traffic activities and researching internal causes of regional traffic state changes for road network optimization and residents’ travel behavior analysis. Based on trajectory data of taxis in Ningbo city of China, this study calculates average driving speed of taxis in different blocks during characteristic period and generates the global Moran’s I and the LISA clustering diagram. On this basis, the spatial clustering characteristics of congestion on working days and non-working days are analyzed. Furthermore, in order to further characterize the changes of congestion from the perspective of spatial migration, a method of measuring geometric displacement is adopted to describe spatio-temporal migration trend of traffic states, four indicators designed to identify urban frequently congested areas, including migration direction, angle, distance, and low-value area. The results show that the high-clustering area are located urban fringe and the low-clustering area are located at geometric center of major urban areas. Spatial–temporal migration law of low-value areas in city-center is obvious. Difference between trend is compared with non-working days, the offset and azimuth of low-value area in downtown on working days are even bigger. The accurate capture of the characteristics of congestion space migration at the urban scale will help to formulate more targeted congestion management strategies.
Keywords: Traffic congestion; Spatio-temporal migration; Traffic status; GPS trajectory data; Spatial auto-correlation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712100755X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:588:y:2022:i:c:s037843712100755x
DOI: 10.1016/j.physa.2021.126482
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().