Appearance of Random Matrix Theory in deep learning
Nicholas P. Baskerville,
Diego Granziol and
Jonathan P. Keating
Physica A: Statistical Mechanics and its Applications, 2022, vol. 590, issue C
Abstract:
We investigate the local spectral statistics of the loss surface Hessians of artificial neural networks, where we discover agreement with Gaussian Orthogonal Ensemble statistics across several network architectures and datasets. These results shed new light on the applicability of Random Matrix Theory to modelling neural networks and suggest a role for it in the study of loss surfaces in deep learning.
Keywords: Random Matrix Theory; Deep learning; Machine learning; Neural networks; Local statistics; Wigner surmise (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437121009432
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:590:y:2022:i:c:s0378437121009432
DOI: 10.1016/j.physa.2021.126742
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().