EconPapers    
Economics at your fingertips  
 

Dynamic importance of network nodes is poorly predicted by static structural features

Casper van Elteren, Rick Quax and Peter Sloot

Physica A: Statistical Mechanics and its Applications, 2022, vol. 593, issue C

Abstract: One of the most central questions in network science is: which nodes are most important? Often this question is answered using structural properties such as high connectedness or centrality in the network. However, static structural connectedness does not necessarily translate to dynamical importance. To demonstrate this, we simulate the kinetic Ising spin model on generated networks and one real-world weighted network. The dynamic impact of nodes is assessed by causally intervening on node state probabilities and measuring the effect on the systemic dynamics. The results show that structural features such as network centrality or connectedness are actually poor predictors of the dynamical impact of a node on the rest of the network. A solution is offered in the form of an information theoretical measure named integrated mutual information. The metric is able to accurately predict the dynamically most important node (“driver” node) in networks based on observational data of non-intervened dynamics. We conclude that the driver node(s) in networks are not necessarily the most well-connected or central nodes. Indeed, the common assumption of network structural features being proportional to dynamical importance is false. Consequently, great care should be taken when deriving dynamical importance from network data alone. These results highlight the need for novel inference methods that take both structure and dynamics into account.

Keywords: Complex system; Information theory; Driver-node identification (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122000243
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:593:y:2022:i:c:s0378437122000243

DOI: 10.1016/j.physa.2022.126889

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:593:y:2022:i:c:s0378437122000243