Characterization of resilience in Aedes aegypti mosquito networks
M. Macias Torres and
F. Naranjo Mayorga
Physica A: Statistical Mechanics and its Applications, 2022, vol. 596, issue C
Abstract:
In this work, the resilience study of the Aedes aegypti mosquito network built in urban areas of Colombia is presented. We define the network based on the Skeeter-Buster model, where each node is represented by a mosquito habitat in each zone. The state that defines the population of each node depends on the gonotrophic cycle of the species and the environmental conditions. Interactions between nodes are defined by the probability that mosquitoes migrate from one node to another (Pdij). The topology of the network is evaluated and the dynamic equation of the system is defined, through which the universal resilience function is obtained in the A. aegypti mosquito network. We found that the more heterogeneous networks are more likely to be resilient, so a strategy could be sought to manipulate this property in A. aegypti networks. The phase transitions have been located for each constructed network and the fixed points in the phase space were characterized. One of the most important contributions is the migration probability of the vector Pdij, which offers a good approximation to the migratory behavior of the vector as a function of the mean flight distance and the distance between habitats. Finally, it is observed in the dynamics of the network that the population growth presents different values of effective mean degree (βeff), with values between 1.6 and 5.57, highlighting the case of Villavicencio with a value of 1.6309.
Keywords: Resilience; Ecological network; Migration probability; Aedes aegypti; Critical parameters; Dynamic modeling (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712200142X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:596:y:2022:i:c:s037843712200142x
DOI: 10.1016/j.physa.2022.127114
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().