Critical temperature of one-dimensional Ising model with long-range interaction revisited
J.G. Martínez-Herrera,
O.A. Rodríguez-López and
M.A. Solís
Physica A: Statistical Mechanics and its Applications, 2022, vol. 596, issue C
Abstract:
We present a generalized expression for the transfer matrix of finite and infinite one-dimensional spin chains within a magnetic field with spin pair interaction J/rp, where r∈{1,2,3,…,nv} is the distance between two spins, nv is the number of nearest neighbors reached by the interaction, and 1≤p≤2. Using this transfer matrix, we calculate the partition function, the Helmholtz free energy, and the specific heat for both finite and infinite ferromagnetic 1D Ising models within a zero external magnetic field. We focus on the temperature Tmax where the specific heat reaches its maximum, needed to compute J/(kBTmax) numerically for every value of nv∈{1,2,3,…,30}, which we interpolate and then extrapolate up to the critical temperature as a function of p, by using a novel inter-extrapolation function. We use two different procedures to reach the infinite spin chain with an infinite interaction range: increasing the chain size as well as the interaction range by the same amount and increasing the interaction range for the infinite chain. As we expected, both extrapolations lead to the same critical temperature within their uncertainties by two different concurrent curves. Critical temperatures fall within the upper and lower bounds reported in the literature, showing a better coincidence with many existing approximations for p close to 1 than the p values near 2. It is worth mentioning that the well-known cases for nearest (original Ising model) and next-nearest neighbor interactions are recovered doing nv=1 and nv=2, respectively.
Keywords: Ising model; Long-range interactions; Critical temperature; Transfer matrix; Infinite vs finite chains; Maximum of specific heat (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122001534
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001534
DOI: 10.1016/j.physa.2022.127136
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().