Temperature-optimized propagation of synchronous firing rate in a feed-forward multilayer neuronal network
Chenggui Yao,
Fei Xu,
Jianwei Shuai and
Xiang Li
Physica A: Statistical Mechanics and its Applications, 2022, vol. 596, issue C
Abstract:
The environmental temperature plays a critical role in the system functioning. In biological organisms, there often exists an optimal temperature for the most effective functions. In this work, we investigate the effect of temperature on the propagation of firing rate in a feed-forward multilayer neural network in which neurons in the first layer are stimulated by stochastic noises. We then show that the firing rate can be transmitted through the network within a temperature range. We also show that the propagation of the firing rate by synchronization is optimized at an appropriate temperature. Our findings provide new insights and improve our understanding of the optimal temperature observed in the experiments in the living biological systems.
Keywords: Spiking neurons; Stochastic dynamical systems; Synchronization; Collective dynamics; Dynamics of networks (search for similar items in EconPapers)
Date: 2022
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122001558
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:596:y:2022:i:c:s0378437122001558
DOI: 10.1016/j.physa.2022.127139
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().