Three-partite vertex model and knot invariants
T.K. Kassenova,
P.Yu. Tsyba,
O.V. Razina and
R. Myrzakulov
Physica A: Statistical Mechanics and its Applications, 2022, vol. 597, issue C
Abstract:
This work is dedicated to the consideration of the construction of a representation of braid group generators from vertex models with N-states, which provides a great way to study the knot invariant. An algebraic formula is proposed for the knot invariant when different spins (N−1)/2 are located on all components of the knot. The work summarizes procedure outputting braid generator representations from three-partite vertex model. This representation made it possible to study the invariant of a knot with multi-colored links, where the components of the knot have different spins. The formula for the invariant of knot with a multi-colored link is studied from the point of view of the braid generators obtained from the R-matrices of three-partite vertex models. The resulting knot invariant 52 corresponds to the Jones polynomial and HOMFLY-PT.
Keywords: Vertex model; Braid group; Knots theory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122002400
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002400
DOI: 10.1016/j.physa.2022.127283
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().