EconPapers    
Economics at your fingertips  
 

A random walk model with a mixed memory profile: Exponential and rectangular profile

K.J.C.C. de Lacerda, L.R. da Silva, G.M. Viswanathan, J.C. Cressoni and M.A.A. da Silva

Physica A: Statistical Mechanics and its Applications, 2022, vol. 597, issue C

Abstract: The theory of Markovian random walks is consolidated and very well understood, however the theory of non-Markovian random walks presents many challenges due to its remarkably rich phenomenology. An important open problem in this context is to study how the diffusive properties of random walk processes change when memory-induced correlations are introduced. In this work we propose a model of a random walk that evolves in time according to past memories selected from rectangular (flat) and exponentially decaying memory profiles. In this mixed memory profile model, the walker remembers either the last B steps with equal a priori probability or the steps A prior to B with exponentially decaying probability, for a total number of steps equal to A+B. The diffusive behavior of the walk is numerically examined through the Hurst exponent (H). Even in the lack of exact solutions, we are still able to show that the model can be mapped onto a RW model with rectangular memory profile.

Keywords: Random walk; Random processes; Non-Markovian; Memory correlations; Anomalous diffusion (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122002497
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002497

DOI: 10.1016/j.physa.2022.127301

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002497