Dynamic community detection based on the Matthew effect
Zejun Sun,
Yanan Sun,
Xinfeng Chang,
Feifei Wang,
Zhongqiang Pan,
Guan Wang and
Jianfen Liu
Physica A: Statistical Mechanics and its Applications, 2022, vol. 597, issue C
Abstract:
The identification of community structures plays a crucial role in analyzing network topology, exploring network functions, and mining potential patterns in complex networks. Many algorithms have been proposed for identifying community structures in static networks from different perspectives. However, most networks in the real world are not static and their structures constantly evolve over time. Identifying community structures in dynamic networks remains a challenging task because of the variability, complexity, and large scale of dynamic networks. In this study, we propose a framework and Matthew effect model for community detection in dynamic networks. Based on this architecture and model, we design a dynamic community detection algorithm called, Dynamic Community Detection based on the Matthew effect (DCDME), which employs a batch processing method to reveal communities incrementally in each network snapshot. DCDME has several desirable benefits: high-quality community detection, parameter-free operation, and good scalability. Extensive experiments on synthetic and real-world dynamic networks have demonstrated that DCDME has many advantages and outperforms several state-of-the-art algorithms.
Keywords: Dynamic Community detection; Complex network; Matthew effect; Cluster (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122002564
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:597:y:2022:i:c:s0378437122002564
DOI: 10.1016/j.physa.2022.127315
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().