Out-of-sample forecasting of cryptocurrency returns: A comprehensive comparison of predictors and algorithms
James Yae and
George Zhe Tian
Physica A: Statistical Mechanics and its Applications, 2022, vol. 598, issue C
Abstract:
Existing evidence shows that daily cryptocurrency returns are predictable by publicly available variables. However, a majority of evidence relies on potentially over-fitted in-sample estimation. This paper provides a comprehensive comparison of predictors and forecasting methods in the literature for out-of-sample return predictions of Bitcoin, Ethereum, and Ripple. We find that (1) well-known in-sample predictors such as investor attention and trading volume fail to produce statistically significant out-of-sample predictability, (2) a change in stochastic correlation with stock markets is the only meaningful predictor with out-of-sample R2 up to 2.69%, 1.71%, and 2.12% for Bitcoin, Ethereum, and Ripple, respectively, and (3) forecasting methods greatly differ in their performances; methods that are inspired by economic mechanism outperform universal forecasting methods such as shrinkage estimators, combination forecasts, monitoring forecasts, and various machine learning algorithms that are commonly used in practice.
Keywords: Cryptocurrency; Return predictability; Out-of-sample tests; Machine learning (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122002928
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:598:y:2022:i:c:s0378437122002928
DOI: 10.1016/j.physa.2022.127379
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().