Quantum data visualization: A quantum computing framework for enhancing visual analysis of data
Nianqiao Li,
Fei Yan and
Kaoru Hirota
Physica A: Statistical Mechanics and its Applications, 2022, vol. 599, issue C
Abstract:
Data visualization assists in the evaluation and analysis of large graphical data sets. In this study, quantum data visualization (QDV) is proposed as the first attempt to aid users in more effectively comprehending data via quantum mechanical effects. The QDV framework is introduced to fully illustrate the steps necessary for implementing this novel concept. To provide a more intuitive visual representation for data analysis, the quantum rendering module is established to associate quantum data with color gradient information based on continuous geometric primitives in QDV tools. As an application, 2D and 3D QDV tools are designed and applied, including quantum circuit diagrams for preparing pie charts, scatter plots, bar graphs, and function curves. Moreover, the interaction mechanisms used to perform scaling, numerical calculations, and position swapping operations on geometric primitives are discussed and demonstrated. In analyzing QDV efficiency, evaluation metrics, such as cost, delay, width, and auxiliary qubit quantities, were calculated for key quantum processes, to assess framework performance and illustrate corresponding advantages over conventional data visualization models.
Keywords: Quantum computing; Data visualization; Interactive techniques; Quantum data; Visual analysis (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122003466
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003466
DOI: 10.1016/j.physa.2022.127476
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().