Universal scaling solution for the connectivity of discrete fracture networks
Tingchang Yin,
Teng Man and
Sergio Andres Galindo-Torres
Physica A: Statistical Mechanics and its Applications, 2022, vol. 599, issue C
Abstract:
The connectivity of fracture networks is critical to the physical characterisation of rock masses and rock engineering, e.g. for the assessment of the performance of rock reservoirs. One way to predict the connectivity is to use the scaling solution of continuum percolation theory based on the renormalisation group. In this study, we create a large amount of discrete fracture networks (DFNs), based on various size distributions, in order to have a significant amount of data to evaluate universal relations. The Fisher distribution is also introduced to consider the orientational anisotropy. By appropriately defining the percolation parameter (i.e. dimensionless density), connectivity and characteristic length scale, we find that the critical quantities are fixed for different DFNs, and the scaling for connectivity of DFNs is universal. Additionally, the definition of characteristic length scale is altered and leads to better scalings, comparing with the classical definition in previous studies. The finding of this study shows great potential in applying the scaling solution to real fracture systems in the future.
Keywords: Discrete fracture network; Percolation; Finite-size scaling solution; Connectivity (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122003557
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:599:y:2022:i:c:s0378437122003557
DOI: 10.1016/j.physa.2022.127495
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().