EconPapers    
Economics at your fingertips  
 

Independent Approximates enable closed-form estimation of heavy-tailed distributions

Kenric P. Nelson

Physica A: Statistical Mechanics and its Applications, 2022, vol. 601, issue C

Abstract: A new statistical estimation method, Independent Approximates (IAs), is defined and proven to enable closed-form estimation of the parameters of heavy-tailed distributions. Given independent, identically distributed samples from a one-dimensional distribution, IAs are formed by partitioning samples into pairs, triplets, or nth -order groupings and retaining the median of those groupings that are approximately equal. The pdf of the IAs is proven to be the normalized nth power of the original density. From this property, heavy-tailed distributions are proven to have well-defined means for their IA pairs, finite second moments for their IA triplets, and a finite, well-defined (n-1)th moment for the nth grouping. Estimation of the location, scale, and shape (inverse of degree of freedom) of the generalized Pareto and Student’s t distributions are possible via a system of three equations. Performance analysis of the IA estimation methodology for the Student’s t distribution demonstrates that the method converges to the maximum likelihood estimate. Closed-form estimates of the location and scale are determined from the mean of the IA pairs and the second moment of the IA triplets, respectively. For the Student’s t distribution, the geometric mean of the original samples provides a third equation to determine the shape, though its nonlinear solution requires an iterative solver. With 10,000 samples the relative bias of the parameter estimates is less than 0.01 and the relative precision is less than ±0.1. Statistical physics applications are carried out for both a small sample (331) astrophysics dataset and a large sample (2 x 108) standard map simulation.

Keywords: Complex adaptive systems; Heavy-tailed distributions; Statistical estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122003983
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:601:y:2022:i:c:s0378437122003983

DOI: 10.1016/j.physa.2022.127574

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:601:y:2022:i:c:s0378437122003983