CPR-TOPSIS: A novel algorithm for finding influential nodes in complex networks based on communication probability and relative entropy
Chen Dong,
Guiqiong Xu,
Lei Meng and
Pingle Yang
Physica A: Statistical Mechanics and its Applications, 2022, vol. 603, issue C
Abstract:
How to evaluate the importance of nodes and identify influential nodes in complex networks is a very significant research in the field of network science. Most of existing algorithms neglect the relationship between a node and its neighbors to evaluate the importance of nodes in networks. In this work, we first define nodes communication probability sequence by making use of the length and number of shortest paths between node pairs. Then the traditional binary adjacency matrix is converted into correlation matrix through relative entropy. Based on information Communication Probability and Relative entropy (CPR), an improved Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), called CPR-TOPSIS, is presented for identifying influential nodes in complex networks from the view of global, local and location information dimensions. The proposed algorithm has been compared with eight state-of-the-art algorithms on several real-world networks to verify the performance. Experimental results show that CPR-TOPSIS has better performance in terms of monotonicity, resolution, ranking accuracy, imprecision function and top-10 nodes.
Keywords: Complex networks; Influential nodes; Communication probability; Relative entropy; TOPSIS (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122005222
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:603:y:2022:i:c:s0378437122005222
DOI: 10.1016/j.physa.2022.127797
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().