EconPapers    
Economics at your fingertips  
 

A local interaction dynamic for the matching problem

Enrico Maria Fenoaltea, Izat B. Baybusinov, Xu Na and Yi-Cheng Zhang

Physica A: Statistical Mechanics and its Applications, 2022, vol. 604, issue C

Abstract: In the matching problem agents with partially overlapping interests must be matched pairwise. It has inspired many physicists working on complex systems who studied the properties of the stable state and the ground state by employing the tools of statistical mechanics. Here, we examine the matching problem from a different perspective by studying a dynamic evolution of a matching system. We propose a model where agents interact locally and selfishly to maximize their benefit. We investigate the dynamic and steady-state properties of our model in two different cases: when mutual benefits between agents are symmetrical and when they are not. In particular, we show analytically that the global benefit of the society in the stationary state is far from the ground state in both cases, and this distance increases with the number of agents. However, a society with symmetrical interests performs better than one with asymmetrical interests. Possible practical implications of our findings are discussed.

Keywords: Stable marriage problem; Matching problem; Nash equilibrium; Master equation; Monte Carlo simulation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122004599
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004599

DOI: 10.1016/j.physa.2022.127690

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122004599