A comparative study on measurement of lane-changing trajectory similarities
Hamidreza Hamedi,
Rouzbeh Shad and
Seyed Ali Ziaee
Physica A: Statistical Mechanics and its Applications, 2022, vol. 604, issue C
Abstract:
Lane change (LC) represents an important driving behavior and significantly influences traffic efficiency and safety. Spatial LC behavior should be evaluated for vehicles in a transportation system, identifying vehicle movement patterns through similarities in LC trajectories. Contexts determine the trajectory of an objective. Therefore, it is necessary to deeply understand these contexts so that they could be incorporated into movement investigation. Both internal and external contexts pose direct/indirect impacts on movements and enable movement changes. As a result, contexts should be treated as distinct movement process dimensions, and the recording of data for trajectory evaluation based on spatiotemporal dimensions is inevitable. However, due to complicated inter-dimension associations, trajectory similarity measurement has rarely been studied in the literature. This paper focuses on contextualizing a similarity measure of LC trajectories using internal and external contexts and spatial footprints. A total of three models, including the longest common subsequence (LCSS), edit distance on real sequences (EDR), and dynamic time warping (DTW), are employed to examine multi-dimensional similarities between trajectories. The Next Generation Simulation (NGSIM) data were applied to evaluate these models. Contextual data were observed to be crucial parameters capable of increasing and decreasing movements. The similarities were found to be dependent on the thresholds in the EDR and LCSS models, and a change in the thresholds changed the outcome. To the best of the author’s knowledge, this paper is the first research on the use of several models for the similarity evaluation of LC trajectories.
Keywords: Similarity measurement; LC trajectory data; Dynamic time warping; Longest common subsequence; Edit distance on real sequences (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037843712200574X
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:604:y:2022:i:c:s037843712200574x
DOI: 10.1016/j.physa.2022.127895
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().