Multi-point short-term prediction of station passenger flow based on temporal multi-graph convolutional network
Yaguan Wang,
Yong Qin,
Jianyuan Guo,
Zhiwei Cao and
Limin Jia
Physica A: Statistical Mechanics and its Applications, 2022, vol. 604, issue C
Abstract:
Prediction of passenger flow distribution in urban rail transit stations can provide important data support for passenger flow organization and passenger travel guidance. However, complex station space structure and simulation-based passenger flow data bring challenges to accurate analysis and prediction of the passenger flow inside the station. This paper proposes a temporal graph attention convolutional neural network model (TGACN) to predict the passenger flow volume and density in key areas of the station. Firstly, considering the topological structure of key areas and the characteristics of passenger flow and flow trend in the station, a multi-graph generation method for continuous space in stations is designed, including geographic neighborhood graph and semantic neighborhood graph, to represent the static and dynamic correlation between nodes. Secondly, a new method of spatio-temporal feature fusion is proposed, which takes multi-graph as input to optimize the extraction and expression of spatial and temporal correlation. Finally, the TGACN is verified by passenger flow data set, which is constructed based on real-time video monitoring data of a transit station in Guangzhou. Experiments demonstrate that the TGACN can obtain the spatio-temporal correlation from passenger flow data, and the prediction results are better than the existing baseline models.
Keywords: Urban rail station; Short-term passenger flow prediction; Multi-graph; Graph convolutional network; Graph attention network; Long–short-term memory (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122006069
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:604:y:2022:i:c:s0378437122006069
DOI: 10.1016/j.physa.2022.127959
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().