EconPapers    
Economics at your fingertips  
 

Detecting limit cycles in stochastic time series

Emil S. Martiny, Mogens H. Jensen and Mathias S. Heltberg

Physica A: Statistical Mechanics and its Applications, 2022, vol. 605, issue C

Abstract: The emergence of oscillatory behaviour represents fundamental information about the interactions of the underlying system. In biological systems, oscillations have been observed in experimental data, but due to the significant level of noise, it is difficult to characterize whether observed dynamics based on time series, are truly limit cycles. Here, we present a simple three step method to identify the presence of limit cycles in stochastic systems. Considering input from one-dimensional time series, as are typically obtained in experiments, we propose statistical measures to detect the existence of limit cycles. This is tested on models from chemical networks, and we investigate how the underlying dynamics can be separated depending on the noise level and length of the series.

Keywords: Oscillations; Limit cycles; Stochastic dynamics; Statistical test (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122005854
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:605:y:2022:i:c:s0378437122005854

DOI: 10.1016/j.physa.2022.127917

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:605:y:2022:i:c:s0378437122005854