Quantum Brownian motion of a charged oscillator in a magnetic field coupled to a heat bath through momentum variables
Suraka Bhattacharjee,
Urbashi Satpathi and
Supurna Sinha
Physica A: Statistical Mechanics and its Applications, 2022, vol. 605, issue C
Abstract:
We study the Quantum Brownian motion of a charged particle moving in a harmonic potential in the presence of an uniform external magnetic field and linearly coupled to an Ohmic bath through momentum variables. We analyse the growth of the mean square displacement of the particle in the classical high temperature domain and in the quantum low temperature domain dominated by zero point fluctuations. We also analyse the Position Response Function and the long time tails of various correlation functions. We notice some distinctive features, different from the usual case of a charged quantum Brownian particle in a magnetic field and linearly coupled to an Ohmic bath via position variables.
Keywords: Quantum Brownian motion; Momentum coupling; Langevin equation; Response function; Mean square displacement; Correlation functions (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122006355
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:605:y:2022:i:c:s0378437122006355
DOI: 10.1016/j.physa.2022.128010
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().