EconPapers    
Economics at your fingertips  
 

Link prediction in multiplex networks using intralayer probabilistic distance and interlayer co-evolving factors

Sajjad Tofighy, Nasrollah Moghadam Charkari and Foad Ghaderi

Physica A: Statistical Mechanics and its Applications, 2022, vol. 606, issue C

Abstract: Multiplex networks are very flexible at showing heterogeneous relationships between identical entities. Link prediction is a fundamental problem in network science. There are many studies on link prediction in complex networks, but few studies were conducted on link prediction in multiplex networks. This study proposes a method for estimating link likelihood in multiplex networks based on the Node-Accessibility-Distribution (NAD) and the co-evolving factors of layers. The NAD is introduced as a probabilistic measure to find local and pseudo-global structural features of nodes in layers of the multiplex network. The probabilistic distance among nodes is calculated using Jensen–Shannon diversity. Since the evolution of one layer subsequently affects the dynamics of other layers, this study introduces the co-evolving factors as criteria for determining the effect of the evolution of layers in the formation of new links in the target layer. In order to estimate the co-evolving factors, logistics regression and Maximum Likelihood Estimation(MLE) are employed. The proposed method is evaluated with six real-world datasets. The results show that the proposed approach has a better average AUC and precision than the state-of-the-art methods. Based on various datasets, the AUC and precision were improved by 1% to 5% compared with the state-of-the-art.

Keywords: Link prediction; Multiplex network; Network evolution; Maximum likelihood estimation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122006525
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006525

DOI: 10.1016/j.physa.2022.128043

Access Statistics for this article

Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis

More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006525