A streaming-data-driven method for freeway traffic state estimation using probe vehicle trajectory data
Yu Han,
Mingyu Zhang,
Yanyong Guo and
Le Zhang
Physica A: Statistical Mechanics and its Applications, 2022, vol. 606, issue C
Abstract:
This paper proposes a streaming-data-driven method for freeway traffic state estimation based on probe vehicle trajectory data, which are represented by a series of timestamps, spatial locations, and instantaneous speeds. The flow and density of a freeway section are reconstructed by estimating the numbers of normal vehicles between consecutive probe vehicles. Specifically, freeway traffic process is divided into different episodes based on the occurrence of shockwaves. The speed of a shockwave is assumed stochastic, and its posterior distribution is estimated via Bayesian regression. Based on the estimated shockwave speed, the number of vehicles between the most downstream and most upstream probe vehicles in an episode is estimated based on Newell’s simplified car-following theory. Then the penetration rate of probe vehicles can be obtained and the numbers of normal vehicles among the probe vehicles that are not captured by shockwaves can also be estimated. Finally, the trajectories of the normal vehicles are reconstructed using linear interpolation. The proposed approach is demonstrated by a simulation experiment and a real-world case study. A good estimation accuracy is achieved even when the penetration rates are as low as 5%–20%. The proposed method is also compared with a state-of-the-art method in the simulation study, which also estimates freeway traffic state solely based on probe vehicle trajectory data. It achieves a comparable performance without spacing information in the trajectory data.
Keywords: Probe vehicle trajectory; Traffic state estimation; Freeway traffic; Streaming-data-driven method (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122006537
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006537
DOI: 10.1016/j.physa.2022.128045
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().