GATC and DeepCut: Deep spatiotemporal feature extraction and clustering for large-scale transportation network partition
Yuan Zhang,
Lu Li,
Wenbo Zhang and
Qixiu Cheng
Physica A: Statistical Mechanics and its Applications, 2022, vol. 606, issue C
Abstract:
The network partition is an important method for many key transport problems, e.g., transport network zoning, parallel computing of traffic assignment problem, and analysis of the macroscopic fundamental diagram, to name a few. This paper designs two partition frameworks called GATC (Graph attention auto-encoder for clustering) and DeepCut, which can partition the transportation network into several components. These two frameworks combine unsupervised deep learning and clustering, taking into account both temporal factors and spatial factors. Firstly, the traffic flow time series data is encoded by graph attention auto-encoder, with graph structure and content considered. Secondly, the normalized cut method is used to partition the transportation network into several homogeneous sub-networks. DeepCut encodes the input data by a simple encoder, and the normalized cut method is used to partition the transportation network. The proposed methods are verified by a numerical example, which demonstrates the rationality and effectiveness of GATC and DeepCut for transportation network partition.
Keywords: Transportation network partition; Clustering; Graph attention; Auto-encoder (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378437122006884
Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:phsmap:v:606:y:2022:i:c:s0378437122006884
DOI: 10.1016/j.physa.2022.128110
Access Statistics for this article
Physica A: Statistical Mechanics and its Applications is currently edited by K. A. Dawson, J. O. Indekeu, H.E. Stanley and C. Tsallis
More articles in Physica A: Statistical Mechanics and its Applications from Elsevier
Bibliographic data for series maintained by Catherine Liu ().